注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

回首望星辰

See you in the next world

 
 
 

日志

 
 

拟合与插值的区别  

2008-11-27 00:57:18|  分类: Numb3rs档案馆 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |

插值和拟合都是函数逼近或者数值逼近的重要组成部分

他们的共同点都是通过已知一些离散点集M上的约束,求取一个定义
在连续集合S(M包含于S)的未知连续函数,从而达到获取整体规律的
目的,即通过"窥几斑"来达到"知全豹"。

简单的讲,所谓拟合是指已知某函数的若干离散函数值{f1,f2,…,fn},通
过调整该函数中若干待定系数f(λ1, λ2,…,λ3), 使得该函数与已知点集的
差别(最小二乘意义)最小。如果待定函数是线性,就叫线性拟合或者
线性回归(主要在统计中),否则叫作非线性拟合或者非线性回归。表
达式也可以是分段函数,这种情况下叫作样条拟合。

而插值是指已知某函数的在若干离散点上的函数值或者导数信息,通
过求解该函数中待定形式的插值函数以及待定系数,使得该函数在给
定离散点上满足约束。插值函数又叫作基函数,如果该基函数定义在
整个定义域上,叫作全域基,否则叫作分域基。如果约束条件中只有
函数值的约束,叫作Lagrange插值,否则叫作Hermite插值。

从几何意义上将,拟合是给定了空间中的一些点,找到一个已知形式
未知参数的连续曲面来最大限度地逼近这些点;而插值是找到一个(
或几个分片光滑的)连续曲面来穿过这些点。

  评论这张
 
阅读(1132)| 评论(0)
推荐 转载

历史上的今天

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017